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Methods of synthesizing stabilizing and robust control laws for non-linear reversible systems which ensure 
asymptotic stability of programmed motions, specified figures of merit and decomposition of transients are 
considered. Non-linear canonical ~sfo~atio~ of state space and tbe controls are obtained which simptify 
the synthesis and anaIysk of tbe Iaws of the stabilization of reversible dynamic systems. 

1. FORMULATION OF THE PROBLEM 

Consider a controlled system, the dynamics of which is described by a system of ordinary differenti~ 
equations of the form 

Here ZO, z = z(t) are n-dimensional vectors of the states of the system at the initial and present 
instants of time, u is an m-dimensional vector of the controls, and F is an n-dimensional vector 
function which satisfies the conditions for a solution of system (1.1) to exist and to be unique. 

Suppose we are given a programmed motion zP = z,(t), t 3 to which is a particular solution of system 
(1.1) for a certain permissible programmed control u = u,, = u,(t) and initial condition zpo = z&J. 
The programmed motion zp(t) will be called the unperturbed motion, while any other motion z(t) of 
system (1.1) under the action of acceptable controls will be called a perturbed (real) motion. Then the 
quantities 

e, =z-zzp, e, ‘u-up 
(1.2) 

are perturbations, i.e. deviations of the real (perturbed) and programmed motions, which satisfy the 
equation in deviations 

e; =FZ(e,,e,,,O, e,(rO)=eq,, tar, (l-3) 

Here 

where F,(O, 0, t) = 0. 

F,(e,,e,,,t)= F,(e, +t,,q, +u,9Q-Ftz,,u,,rf (1.4) 

For a wide range of dynamical systems the structure of Eqs (1.3) and (1.4) is such that 

ez =col(e, ,,..., e,,), n=mr (l-5) 

F,te,,e,,r)=col(F,Ite~,t),....~~_,te:,r),F,~te:,e,,r)) (1.6) 
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FG (ei+’ ,f)=Cj(e~,?)+D,(e~,f)eq+,, i=l,..., r-l 

Here eZi is an m-dimensional vector, ei = col(e,,, . . . , eZi) are mi-dimensional vectors, Ci and Di 
(i=l,..., r) are specified vector and matrix functions, the vector functions Fzi (i = 1, . . . , r) 
(1.7) and (1.8) are continuous and continuously differentiable a sufficient number of times with 
respect to their arguments, and the matrix functions Di (i = 1, . . . , r) in (1.7) and (1.8) are non- 
degenerate for all possible values of their arguments, i.e. 

rankQ(e:,t)=m, VeiERmi, fat,,, i=l,..., r (1.9) 

where R”’ is mi-dimensional Euclidean space. 
Examples of such systems are mechanical and electromechanical systems described by the 

Lagrange-Maxwell equations. 
Equations (1.3H1.9) can be written in an expanded form with respect to the control e, 

e& = F,. (e :+‘,f),Ci(e~,l)+Di(et,t)e,;+,, i-l ,..., r-l (1.10) 

e,, = D;‘(ei,t)(e;, - C,(e:,O) (1.11) 

System (1.3)-(1.9), which possesses the above-mentioned property of solvability, belongs to the class 
of reversible controlled systems. It follows from the fact that it is reversible, taking (1.2) into account, 
that the initial system (l.l), (1.4)-(1.9) is also reversible. It was shown in [l-6] that the reversible 
controlled system (l.l), (1.4X1.9) possesses the property of global controllability and it is easy to 
construct a programmed motion z,(f) for it in analytic form and the corresponding programmed 
control up(t). 

We will assume that the following relations hold for each of the vector functions Ci (i = 1, . . . , r) 
and the matrix functions Di (i = 1, . . . , r) for all possible values of their arguments 

ICi(ei,r)lS 1 a,le:lj, VefERmi, rat,, i-l ,..., r 
j-l 

(1.12) 

IDi(ei,t)lG di -z 00, VeiERmi, tar,,, i=l,..., r (1.13) 

whereayBO(j= l,..., ki), di > 0 are certain constants. We will assume that similar relations hold 
for the partial derivatives of Ci (i = 1, . . . , r) and Di (i = 1, . . . , r) with respect to their arguments. 

We will say that the programmed motion z,(t) of system (1.1) is stabilized if a control law exists with 
feedback with respect to the state vector z(t) of the form 

u-u(z,t)-u,,(r)+e,(z-z,,t) (1.14) 

which ensures the asymptotic stability of z,(t) of system (1.1) and (1.4X1.9) as a whole. 
The properties, criteria and laws of stabilization of the programmed motion of reversible controlled 

systems further develop and extend the results obtained previously in [l-14]. 

2. CANONICAL FORMS OF THE DESCRIPTION OF REVERSIBLE 
CONTROLLED SYSTEMS 

The proposed method of analysing the stability and of synthesizing stabilizing controls for non- 
linear reversible controlled systems are based on reducing (1.1) and (1.4)-(1.9) to certain simple 
“canonical forms” using non-linear transformations of the coordinates in state and control spaces. It 
is important to note that for reversible controlled systems in canonical form the problems involved in 
analysing the stability of the programmed motion and of synthesizing stabilizing controls are simplified 
considerably. 
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The canonical form of the first type is the representation of the reversible controlled system in the 
form 

where 

e, =col(e,,,...,e,,> (2.2) 

is an n-dimensional vector of the “canonical” state of the system, exi, 4 = col(e,,, . . . , exi) are m- and 
mi-dimensional vectors, e,,, is an m-dimensional vector of the “canonical” control, and P and Q are 
II x n and rr x m matrix functions of the form 

4,(&t) &(ei,r) 0 . . . 0 

P2,(e,2A &(e,2,t) &(ex2,0 0 . ..O 
*. *. 

P(e:,t)= * 
P,-fl(ei-2,0 . . . Pr-2,r-l CC’ 9 t) 0 

P,_,,,(e:-‘,r) . . . Pr+_, (e:-‘A fl_l,r(e:-190 

&(e:,t) . . . Pr,,-I (&t) p,(e$t) 

0 
Q(e:.O= Q,(er t) H I X’ 

P-3) 

(2.4) 

where 1 P(k, t) 1 d ~1 <=, IQ(e&Ol S Kz < -, Ve: E R”, t 2 to, where q, rc2 are certain positive con- 
stants, and for the partial derivatives of the element-functions of the m x m blocks ‘Pii (i = 1, . . . , r, 
j=&..., i) of the matrix-function Pwith respect to their arguments, relations similar to (1.12) are satis- 
fied, while for the partial derivatives of the element-functions of the m x m blocks Pi,j+l (i = 1, . . . , 
r - 1) of the matrix M and the m x m block Iz, of the matrix Q with respect to their arguments, relations 
similar to (1.13) are satisfied, and 0 is the zero matrix of corresponding dimensions. 

For reversible controlled systems, the matrix functions Pi,j+l (i = 1, . . . , r - 1) and the block Q, are 
non-degenerate for all possible values of their arguments, i.e. 

rankIji+,(e~,t)=m, Ve~,rERmi, tar,, i=l,..., r-l (2.5) 

rankQ,(el,r)=m, Vei ER”, tar0 (2.6) 

Within the framework of the canonical representation of reversible controlled systems of the first 
type it is best to distinguish two subclasses of canonical forms which are distinguished by the structure 
of the matrix function P in Eq. (2.1), namely 

P(e:,t) = 

S*(,Q 52(e$) 0 . . . 0 

&t&r> p22(ei,r) P23(e,2vr) 0 . . . 0 

0 -F$(e,2,t). &(e,2,r) **. ‘*. 
: -. *. *. . . . P r_2,r-l <eIs2, 0 .O 
0 0 . . . -Pr~2,r_l(e:-2,r) ~r_l,,-l(e~-2,0 P,_,,,(e:-‘,r; 
0 . . . 0 - &,,(e?,t) &,(e:-‘2) 

(2.7) 
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S,(t) 420) 

I 
0 . . . 0 

0 e2(ei,t) &(ei,t) 0 . . . 0 

P(e!j-‘,f) = ’ 
*. *. *. . * . . . 

0 0 (2.8) 
. . . 0 e_2,r-2(e:-3,r) Pr-2,r-l(e:-3q0 

. . . 0 Pr_l,r-l(e:-2rt) P,-,,,(e:-2Tt) 

0 0. . . . Prr(e:-‘,t) 

The anonid form of the second type is the representation of the reversible controlled system in 

the form 

e’ =Pe,+Qe,, x e,(tO)=exo, f310 v9 

where e, is the n-dimensional vector (2.2) of the “canonical state” of the system, and P and Q are 
constant matrices having the same structure as the matrix functions P (2.3) and Q (2.4), where the m 
X m blocks Pi,j+r (i = 1, . . . , r - 1) of the matrix P and the m x m block Q, of the matrix Q are non- 
degenerate, i.e. 

ranke,i+l =m, i=l,..., r-l; rankQ, =m (2.10) 

Note that in the special case when the matrices P and Q in (2.9) have the form [4-6] 

(2.11) 

where I,,, is the unit m x m matrix, the reversible programmed control (2.9) has the simplest “canonical 
form”, and its state vector is determined by canonical variables of the form 

e, =col(e,,,..., ex,)=col(exl,e; ,,..., e::-“), e,, =e;._,, i=2 ,..., r (2.12) 

where e,, is the ith derivative with respect to time c of the variable e,, = e,,(t). 

3. REDUCTION OF THE REVERSIBLE CONTROLLED SYSTEMS TO 
CANONICAL FORM 

We will construct a one-to-one transformation of the state and control spaces of the initial reversi- 
ble controlled system (1.3)-(1.9) which reduce it to a simpler “canonical form” (2.1)-(2.6). 

We will seek transformation in the form 

e, = Yr(ez, 0, e, = Yr+l(e,,e,,t) (3.1) 

where Y’ and \yr+r are II- and m-vector functions of the following respective forms 

1 Y’(e,,t)=col(Y,(e,,t) ,..., Y:(el,O) (3.2) 

Y,(e:,r)=K, +he,], K, =O, L., =I, 

Yi(ei,t) = Ki(ef-‘,t)+ Li(ei-‘,t)ey , i = 2,...,r 

Y,+l(eZ,e,,t)= K,+l(e,,f)+L,+,(e,,r)e, 

(3.3) 

(3.4) 

(3.5) 

Here Ki (i = 2, . . . , r + 1) is an m-vector function, and Li (i = 2, . . . , r + 1) are m x m matrix 
functions, to be determined. 

We will write an algorithm for obtaining the unknown vector-functions Ki (i = 2, . . . , r + 1) and the 
matrix-functions Li (i = 2, . . . , r + 1). 
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Consider the r identities 

e’ XI =Y~(e:,t)=K;+L;e,,+4e;, =e;, 

e ii =\Y;(e~,t)=K;(e~-‘,t)+Li(ef-l)ezi +Li(ei-‘,t)eij, i=2,...,r-1 (3.6) 

e ;V = Yj(ei,t) = K;(ei-‘,t)+ Lr(el-‘,t)e,, + L,(e:-‘,t)e, 

Replacing the derivatives eii (i = 1, . . . , r) and eii (i = 1, . . . , r) in (3.6) by means of the formulae 

eii = Fxi (e:’ ,t)=&(e~,t)e,,+...+~,i+,(e~,t)exi+,, i=l,..., r-l 

(3.7) 
e;, = F’,(e~,e,,t)=J’,,(e~,t)+...+P,~(e~,t)e,, +Q,(e:,t)e, 

and using (1.7) and (1.8), we obtain the relations 

f;,(e$)e,, + S2(ei90e,, =K; +&e,, +4(C,(“:,f)+4(e:,t)e,2) 

&(e~,t)ex,+...+Iji+l(e:,t)exi+, - K,:(e~-‘,t)+~(ef-‘,r)e, + 

+Li(ei-’ ,t)(Ci(ei,t)+ Di(ei9t)eq+l ), i -2,...,r-1 

&(e:,t)e,, +...+P,(e:,t& + Q,(eI,t>e, - &(e:-‘,t)+ 

+i,(e:-’ , Oe,, + 4 (ei-’ ,r)(C,(e,,r)+D,(e,,r)e,) 

(3.8) 

In a reversible controlled system of canonical form (2.1)-(2.6) the matrix-function Pi* is non- 
degenerate by virtue of (2.5). Hence, the first equation (with i = 1) of system (3.8) can be solved for 
exz and we can obtain the desired second transformation (with i = 2) from (3.4) connecting the 
variables exz and ezz with vector function Y&$, t), in which 

K2(e:,t)-51’(e~,t)[K; +L;e,, +4C~(e~.r)-~,(e~,r)e,,l-~;‘(e~,r)[C~(e~,r)-S~(e~,r)e,,l 

&(e:,r) - @(e:.r)Q(e~,r) 
(3.9) 

Continuing this process, i.e. substituting into each current ith equation (beginning with i = 2) from 
(3.8) the previously obtained vector-functions ‘I’j 0’ = 1, . . . , i), 4 and the matrix function Li and taking 
into account, by (2.5) and (2.6), the fact that the matrix functionsPi,i+i (i = 2,. . . , r- 1) and Q, are non- 
degenerate, we obtain the required transformations of (3.4) and (3.5) (for i = 3, . . . , r + l), in which 

Ki(e:-‘,t) - 5_:,i(Yi-‘,t)[K,_l(e~-2,t) + &_l(e:-‘,r)eq_, + 

+Li_~(e~-2,t)Ci_,(f?~-‘,t)-‘~ f&(@‘,r)~~l, i=3,...,r 
k-l 

Li(ef-’ ,t) = ~_~,i(Yi-‘,t)Li_~(e~-2,t)Di_~(e~-’,t), i - 3,...,r 

K,+,(e,,t) - Q~‘(Yr,t)[K~(e~-‘,t) + &(e:-‘.t)e, + 

+L,(ei-’ ,f)C,(eid- i &(yrdykl 
k-1 

L,+,(e,,t) - Q~‘(Y’,t)Lr(e~-‘,t)~,(ei.t) 

Yk - col(Y1 ,...,Yk), Yk = Yk(e,k9t), 

Y, -Yk(e$,t), k-l ,..., i-l; Yr-Yr(e:,t) 

(3.10) 

Since, taking relations (3.3) (3.4), (3.10) (1.9) (2.5) and (2.6) into account we have 
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rankL, =m, rankLi(ei-‘,t)=m, Vei-‘ER”‘(‘-‘), tato, i=2,...,r+l (3.11) 

and the n x m Jacobi matrix Jy”. (&‘, t) = Nr (e,, t)& has a block lower-triangular form, we have 

rank .I,, (e,‘-‘,t) - n, vei-' ERm”-“, t 2 to (3.12) 

Taking (3.1), (3.5) and (3.11) into account we have 

rankJyl,+,(e,,t)=m, Ve, ER”, tat0 

.&,+,(e,,r) =~~~+l(ez,e,9r)~~e, = ~%+~(e~~r) 

(3.13) 

Solving the first equation of (3.1) for e, and the second equation for e,, we obtain the inverse 
transformations 

e, =W(e,,t)=col(~,(e~,t) ,..., ap,(e:,t)) 

e, =@r+l(e,Ve,,O 

(3.14) 

where 

@o,(ei,t)=Ml +N,e,,, ~i(e:,t)=Mi(e~-l,t)+Ni(e~-‘,t)e~i 

i = 2,...,r; el = col(e,, , . . . , exi ), e: = e,, M,=O, N=I, 

M,(ei-‘,t) =-L~‘(~i-‘,t)Ki(~i-‘,t), Ni(e:-‘,t)= L.y’(<P’-‘,t) 

Qr+‘(e,,e,~t) = M,+‘(e,,t)+ N,+‘(e,,t)e, 

M,+l(e,,t)=-~~~l(QP’,t)~,+‘(~‘,t), Nr+l(e,,t)=~~~1(4f,t) 

a’-’ = col(@ ,,..., ai_‘), &’ =a’-‘(ei-‘,t) 

0, =ak(ei,t), k=l,..., i-l; W=W(e:,t) 

(3.15) 

We can similarly construct one-to-one transformations for the canonical forms (2.1), (2.2), (2.7), 
(2.4)-(2.6); (2.1), (2.2) (2.8), (2.4X2.6) and (2.9X2.10). They can also be obtained from (3.1)-(3.5), 
(3.9), (3.10), (3.14) and (3.15) by replacing (2.3) by (2.7) and (2.8), respectively, or by replacing (2.3) 
and (2.4) by the matrices P and Q from (2.9). In Section 7 we will derive explicit formulae (7.2) and 
(7.3) for the direct and inverse transformations of (3.1X3.5), (3.14) and (3.15) for the electro- 
mechanical reversible controlled systems considered in [4-141. 

4. CRITERIA FOR THE STABILITY AND STABILIZATION OF PROGRAMMED 
MOTION FOR REVERSIBLE CONTROLLED SYSTEMS WITH A CANONICAL 

FORM OF THE FIRST TYPE 

We will first consider the problem of ensuring asymptotic stability of the programmed motion in a 
closed reversible controlled system, whose dynamics can be represented in the canonical form of the 
first type (2.1)-(2.8). We will synthesize the stabilizing control law with feedback with respect to e, in 
the form 

ew = ro(e,,t)e, (4.1) 

where the matrix of the gains 

(4.2) 

is an m x n matrix function consisting of m x n blocks IQ (j = 1, . . . , r). 
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Suppose the reversible controlled system has a canonical form of the first subclass of the first type, 
i.e. it is described by Eqs (2.1X2.2), (2.7) and (2.4)-(2.6). We will construct the matrix rs given by 
(4.2) in the form 

(4.3) 

ro,(e,,t) = Q~‘(e:.r)T;,,(e~-‘,t) (4.4) 

so that 

T(e:-‘,t)= P(e~-‘,t)+Q(e~,t)ro(e,,t) (4.5) 

and we will choose the blocks Pii (i = 1, . . . , r) of the matrix function P (2.7) and (2.5) and the block 
f’, of (4.4), where r,-,is an m x m matrix function, in the matrix function rs (4.3), so that the matrix 
function r (4.5) is such that 

-[rye;-’ ,t)+r*<e:-’ ,t)]/2=G,(e~-‘,t) (4.6) 

Here G1 is a quasi-diagonal symmetric matrix function of the form 

where 

(4.7) 

(4.8) 

are m x m blocks with positive diagonal elements with a predominant diagonal, i.e. the fdowing 

inequalities are satisfied for their elements glaj (k, j = 1, . . . , m; i = 1, . . . , r) 

(4.9) 

inf 
r’;‘ERm”-‘).,,f(, 

g,ifi (e:-’ ~6,>0, k=l,..., m; i=2 ,..., r 

L j#k J 

where S, (k = 1, . . . , m; i = 1, . . . , r) are certain positive constants. 
Then the equation of the transients in the closed canonical reversible controlled system (2.1), (2.2), 

(2.7), (2.4X2.6) and (4.1X4.9) has the form 

e, =Uei-‘,r)e,, e,(fo)=exO, ta to (4.10) 

where r is the matrix function of (4.5)-(4.9). 
We will consider the function 

V(e,) = Kle,l* (4.11) 

and calculate its derivative with respect to t by virtue of (4.10) and (4.5)-(4.9) 
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V’(e,(t)) = )$(le,(f)l* j = Me:(t)(r(e:-‘,t)+r*(e:-‘,t))e,(t)) = 

= -e:(t)G,(e:-‘,t)e,(t), t 3 to (4.12) 

It follows from (4.9) that the quasi-diagonal symmetric matrix function Gr (4.7)-(4.9) is positive 
definite for ah values of its arguments, i.e. 

G,(e:-‘,t)>O, t/e:-’ eRm(‘-‘), t3t 0 (4.13) 

Hence we obtain the following limit from (4.12) and (4.11) 

* 
V’(e,O)) = -e,WG,(e, ‘-‘,t)e,(t) g -y,le,(t)i* = -2y,V(e,(t)), r 3 to (4.14) 

Here ‘yl is a parameter such that 

o<y, s inf h,(e:-‘,t) 
or 
~-IEpl(r-IJ*,P,,~ 

(4.15) 

where L,,, (@, t) is the minimum eigenvalue of the positive definite matrix function Gr of (4.7)-(4.9) 
and (4.13). From (4.14) and (4.15) we obtain c(e&)) G V(e,(t,)) exp[-2yr(t - to)], t 3 ta. Hence, once 
again using (4.11) we obtain 

~e,(r)~2~~~.r,,~2exp[-2y,(r-ro)1, e,(rO)=eq,, r 3 r0 (4.16) 

Consequently, the position of equilibrium e, = 0 of system (4.10), (4.5)-(4.9) is asymptotically stable 
as a whole with the limit 

Ie,(t)l~le,,lexp[-y,(r-to)l, e,(to)=e,,, rat0 (4.17) 

Substituting e, from (3.1) and e, from (4.1X4.9) into (3.14) and (3.15) we obtain the stabilizing 
control law with feedback with respect to e, 

for the initial reversible controlled system (1.3)-(1.9), (1.12) and (1.13). 
The equation of the transient in the closed initial reversible controlled system (1.3)-(1.9), (1.12), 

(1.13), (4.18) and (4.3X4.9) has the form 

e,O = F,(e,,QP,+,(Y”(e,,t),ro(Y”(e,.t),r)~”(e,,t),t),t), e,(rO) = eq,, t 2 to (4.19) 

Using the relations for the finite increments of the vector function ti(e,, t) (3.14) and (3.15) and for 
the limit of the transient (4.17), (1.12) and (1.3), we obtain for the canonical reversible controlled 
system 

le,(t)l=IW(e,,t)l= 
I( 

i I,,@e~-‘,r)de)e,(t) 
I 

4 pole,(t)lS 
0 

Here 

(4.21) 
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and ve > 0, Vj 2 0 (‘j = 1, . . . , s) are certain parameters. 
It follows from (4.20) and (4.21) that the position of equilibrium e, = 0 of the initial reversible 

controlled system (1.3)-(1.9) (1.12) and (1.13) with control law e, (4.18) and (4.3X4.9) is asymptotic- 
ally stable as a whole. Consequently, the programmed motion zP(t) of the initial reversible controlled 
system (l.l), (1.3X1.9), (1.12) and (1.13) also with control law (1.13), (4.18) and (4.3X4.9) is 
asymptotically stable as a whole with the transient limit (4.20) and (4.21). 

We will now consider the problems of the stability of the programmed motion and of synthesizing a 
stabilizing control law for the reversible controlled system with a canonical form of the second subclass 
of the first type (2.1X2.2), (2.8) and (2.4X2.6). 

For the canonical reversible controlled system (2.1)-(2.2), (2.8) and (2.4X2.6) we will synthesize a 
stabilizing control law e, with feedback with respect to e, in the form (4.1), (4.3) and (4.4) and we will 
choose the blocks PL. (i = 1, . . . , r - 1) of the matrix function P (2.8) and (2.5) and the block ro, (4.4) 
of the matrix function Ia (4.3) so that the matrix function I (4.5), (2.8) and (4.3) is such that 

-[l-(e:-’ ,t)+r*g-’ ,t)]/2=G,(e:-‘,r)+G*(e~-*,t) (4.22) 

Here Gi is a quasi-diagonal symmetric positive definite matrix function (4.7X4.9), (4.13) and the 
matrix function G2 has the form 

0 F;*(t) 0 0 

F;;(t) 0 &(&0 0 0 

G,(e:-*,t) = -i 0 P2:(ei,t) ‘*. ‘a. i 

. . . . 0 Pr+(e:-*,r) 

0 . . . 0 P,t_,,,(e:-*,r) 0 

Suppose the following relations are satisfied 

inf 
‘WI [ 

6, -idFj2(r)I 
I 

2a, >O 

inf 
ul,ERm.rr~{, [ 

S2 -~elq,(r)l-~Elq,(e:,l)l 1 aa2>O 

in,f 
fi; ER”(‘-‘),f r,,, 1 

Si -~~l~-,,i(e~-2,r)l-~~l~,i+~(e~-1,r)l 1 )CXi >O, i=3....,r-1 

ri;‘Ef$~~‘.,ar,, [ 
6, -~dP,_,.,(e:-*,r)l 1 ba,>O 

(4.2% 

(4-W 

where Si = mink = i ,,.. cn Sk, Sa (k = 1, . . . , m; i = 1, . . . , f) are positive constants from (4.9) and E, o+ 
(i=l,... , r) are certain positive parameters. 

The equation of the transient in the closed canonical reversible controlled system (2.1), (2.2), (2.8), 
(2.4X2.6), (4.1)-(4.5), (4.7)-(4.9) and (4.22X4.24) then has the form 

e.; = r(e:-l, 0, e, , e, (to) = exe,, r 2 to (4.29 

Making the following replacement of variable in (4.25) 

e, = He, (4-W 

where e,, = col(eyl, . . . , e,,), eyi (i = 1, . . . , r) are II- and m-dimensional vectors 

H = diag(I,,sI,,...,C’ I,,,) (4.27) 

is a constant, diagonal, positive definite 12 x n matrix, and E > 0 is the parameter from (4.24), we can 
reduce it to the system 

e;. = r,(e;-‘,r)e,, e,(ro)=ejn. r3 to (4.28) 
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Here 

r,(e,i-‘,t) = H-‘r(H,e_~-‘,t)H (4.29) 

where Ht = diag(l,, &, . . . , $-‘%,,J and E > 0 is the parameter from (4.24), where the matrix ry (4.29) 
is such that 

(4.30) 

where Gr is the positive definite matrix function (4.7)-(4.9) and (4.13) while Gz is the matrix function 
(4.23) which satisfied (4.24). 

Consider the function 

V(e,> = ,5$ley12 (4.31) 

We will calculate its derivative with respect to t by virtue of (4.28), taking into account relations 
(4.29)-(4.31), (4.7)-(4.9), (4.13) and (4.22)-(4.24). We obtain the relation 

=-ef(t)(G,(e!j-‘,t)+&G2(e~-2,f))e,(t)~ -i ailey(t)l’s -‘y2V(e,(t)), ta 10 
i=i 

(4.32) 

where I$.. = diag& a&, _ . . , C3 I,,,); E > 0, g > 0 (i = 1, . . . , r) are parameters from (4.24) and 
~=milli&i=l,..., r. 

From (4.32) we find V(e,(t)) 2 V(e,(t0)) exp[-2yz (t - to)], t 2 te Hence, using (4.31) once gain we 
obtain the relation 

(4.33) 

Consequently, the position of equilibrium e,, = 0 of system (4.28) is asymptotically stable as a whole 
with the limit 

le,(t)l~le,lexp[-y2(t-to>], e,(fo)=eti, t3 t0 (4.34) 

Hence it also follows from (4.26) and (4.27) that the position of equilibrium e, = 0 of system (4.25), 
(4.5), (4.22)-(4.24), (4.7H4.9) and (4.13) is asymptotically stable as a whole with the limit 

Ie,(t)lS ~,leX~lexp[-y2(t-~o)Ir e,(t0)=e,,, tat0 (4.35) 

where & = [HI /H-r 1. 
By analogy with the preceding case, using (4.20), (4.21) and (4.35) it can be shown that the position 

of equilibrium e, = 0 of the closed initial reversible controlled system (4.19), (1.4)-(1.9), (1.12), (1.13), 
(4.3)-(4.5), (4.22)-(4.24), (4.7)-(4.9) and (4.13) is asymptotically stable as a whole and, 
consequently, the programmed motion z,(t) of the initial reversible controlled system (l.l), 
(1.3)-(1.9), (1.12) and (1.13) with control law u (l-14), (4.18), (4.3}-(4.5), (4.22~4.~~, (4.7)-(4.9) 
and (4.13) is also asymptotically stable as a whole with transient limit 

(4.36) 
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where p,, is a positive parameter defined in the same way as (4.21) and y2 and pt are the parameters 
from (4.35). 

5. CRITERIA OF THE STABILITY AND STABILIZATION OF THE 
PROGRAMMED OPTION FOR A REVERSIBLE CONTROLLED SYSTEM 

WITH CANONICAL FORM OF THE SECOND TYPE 

We will now consider the problems of the stability and stabilization of the programmed motion for 
a reversible controlled system which can be represented in canonical form of the second type (2.9), 
(2.2) and (2.10). Taking into account the structure of the constant matrices P and Q from (2.9) and 
(2.10) it can be shown that rank 11 Q, PQ, . . . , P”‘Q] 1 = II. Consequently, the pair (e Ql is 
controllable and a constant m x m matrix 

exists, where T’aj G=: I,. . . , r) are m x M blocks such that the matrix 

I-=P+Qr, (5.2) 

Reh,(T) c 0, i = I,...,n (5.3) 

where A@‘) (i = 1, . . . , n) are the eigenvalues of I?. 
We will synthesize the control law with feedback with respect to e, in the form 

Then the equation of the transient in the closed canonical reversible controlled system (2.9), (2.2), 
(2.10), (5.4) and (5.1)-(5.3) has the form 

Consequently, the position of equilibrium e, = 0 in the closed reversible controlled system (5,5), 
(5.2) and (5.3) is ~~ptotica~ stable as a whole with transient limit of the form 

(5.6) 

where y3 = rnq Re h(r) (i = 1, . . . , n), and b2 > 0 is a parameter which depends solely on the r. 
Substituting e, from (3.1) and e, from (5.4) and (5.1)-(5.3) into (3.14) and (3.15) we obtain the 

s~bi~~ing control law with feedback with respect to e, 

e, =~,+~(e,,~Oe,,t)=~,+,(YY'(e,,t),roY'(e,,t),t) (5.7) 

and the equation of the transient in the closed initial reversible controlled system (1.3)~(1.9), (1.12), 
(l-13), (5.7) and (5.1)-(5.3) of the form 

e; = F,(e,~@,+lW’(ez,O, roWe,,t),t)4, ez(tO)=ey,, r 2 to (5.8) 

Estimating the transient in (5.8) using (4.20) and (5.6) we obtain 

te,(t)t=tQ’(e,,r)t~ j@e,(t)td ~0~21e~(?~)lexp[y3(f -to)] = 

= tL0P2 1 y’(e, @O ). to Yexp[y3 (t - to )I, t 2 to (5.9) 

where b is a parameter defined in the same way as (4.21), and pr and y3 are the parameters from 
(5.6). 

Hence it follows that the position of equilibrium e, = 0 in the closed initial reversible controlled 
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system (5.8), (1.4)-(1.9), (1.12), (1.13), (5.7) and (5.1)-(5.3) is asymptotically stable as a whole. Con- 
sequently, the programmed motion z,(t) of the initial reversible controlled system (1.1) (1.4)- 
(1.9), (1.12) and (1.13) with control law (1.14) (5.7) and (5.1)-(5.3) is asymptotically stable as a whole 
with the transient limit (5.9). 

6. DECOMPOSABILITY, ROBUSTNESS AND STABILIZATION QUALITY OF THE 
REVERSIBLE CONTROLLED SYSTEM 

Crossed dynamic couplings are an inherent feature of multidimensional reversible controlled 
systems. The intensity of the interaction between these couplings depends non-linearly on the actual 
state. Because of this, when using linear proportional-integral controllers in a closed reversible 
controlled system the quality of the transient deteriorates considerably and a loss of stability of the 
programmed motion becomes possible. 

An advantage of the synthesized non-linear stabilization laws of programmed motion is the fact that, 
by a correct choice of the parameters of the matrices of the gains, one can ensure complete compen- 
sation of the crossed couplings and a specified form of the attenuation of the transients in a closed 
reversible controlled system. 

A reversible controlled system will be said to be decomposable if a control law exists for which the 
equation of the transient in the closed system can be expanded into a system of independent equations 
in the controlled coordinates. 

It can be shown that synthesized control laws ensure that a reversible controlled system is 
decomposable in this sense. Thus, for example, for a reversible controlled system in canonical form of 
the second type (2.9), (2.2) and (2.10) it is sufficient to choose the blocks of the matrix P from (2.9) 
and of the matrix Ia (5.1) such that 

ej =diag(ejk,)rzl, i=l,..., r-l; i=l,..., i+l (6.1) 

Isj =Q;‘(-P, +foj), ibj =diag(ibju)T=,, j=l,...,r 

Then, the equation of the transient (5.5) can be split into M independent equations of the form 

e -ik =F&, ZJrO)=e 
% ’ 

tat,, k=l,..., m (6.2) 

Pllkh PlZkk 0 *.. 0 

PZlkk P22kk P23kh ’ ... ’ 

rpi . 
-:. : 

. . . 

Pr-l.lkk ..* . 
ro,kk *.. 

where FXk = col(e,,, . . . , ex,) is an r-dimensional vector of the state of the system, where e, = 
col(e,,, . . . , ex,) are n- and m-vectors. 

The parameters of the equations of the transient (6.2) tak@g (6.1)jnto account, are the ~cfficients 
~OjkkO’=l,.-.~,r;k=l,..., m)-the elements of the matrix TO = 1 1 rol, . . . , rb 11, where Iaj = (2,r, 
+ Pti = diag (I’,-&r= 1 (j = 1, . . . , m) found from the matrix of the gains l’, (5.1) of the stabilizing 
control law e, (5.4) and (5.1)-(5.3). 

It is obvious that they can always be chosen so that the transient has a previously specified form and 
rate of damping. In the important practical case when n = 3m, which corresponds to the dynamics of 
electromechanical reversible controlled systems, the parameters of the law of stabilization of the 
programmed motion can be chosen using Vyshnegradskii diagrams, starting from the requirement to 
ensure the desired form of transient damping (monotonic, aperiodic or oscillatory) and specified 
figures of merit (accuracy, speed of response, etc.). 

Theoretical formulae have been obtained [4,6] for the parametric synthesis of non-linear stabilizing 
and modal laws of control of reversible controlled systems in a canonical form of the second type with 
Vyshnegradskii parameters. It is important to note that these stabilization laws ensure robustness of 
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the reversible controlled system, i.e. the stability of the programmed motion with respect to limited 
parametric and constantly acting perturbations [4,6]. Using non-linear transformations in state space 
and the equations proposed above, it is easy to extend these results to a wider class of reversible 
controlled systems and to synthesize corresponding robust stabilization laws of the programmed 
motion with feedback with respect to the initial or canonical state vectors. On the basis of the 
stabilizing and robust stabilization laws one can synthesize adaptive control of the programmed 
motion of reversible controlled systems using the methods described in [l-3,7-14]. 

7. APPENDIX 

For electromechanical reversible controlled systems with a d.c. motor with a rigid reduction gear, 
which describes the non-linear dynamics of robots, lathes, etc. [4-141, the equations in deviations have 
the form (1.3)-(1.9), where IZ = 3m and 

e, =col(q-qp,q’-qb,I-lp), FZ,(e,2.t)=q’-qp,FZZ(e,3,f)= 

=A-‘(q)(k~MI-b(q,q.,r))-A-‘(q,)(k~MI,-b(qp,qb,t)), &.3(eq,e,,t)= 

=L-‘(e,-R(I-Ip)-k&(q*-4;)). C’(r:,t)=O, L+(ei,l)=I, 

C,(e,2,1)=A-‘(q)(k~MI,-b(q,q.,r))-A-’(q,)(k,l,-b(q,qb,r)), Dz(e:,l)=A-‘(q)k,+., 
(7.1) 

C,(e2,t)=-L-‘(R(I-Ip)-k,ip(q.-qb)). Ll3(eZ,t)=C’ 

A(q)= Ji, +i,‘A,(q), b(q,q.,l)=koi,q’+i,‘bo(q,q.,l) 

Here q is an m-dimensional vector of the generalized coordinates of the mechanical part-the slave 
mechanism of the electromechanical reversible controlled system, Ao(q) is a positive definite m x m 
matrix of the kinetic energy T = %q**&,(q)q of the slave mechanism of the electromechanical 
reversible controlled system 

II = II(q) is the potential energy of the slave mechanism of the reversible controlled system, Q,-, = 
Qo(q, q-, t) is an m-dimensional vector of the generalized forces (torques) of the resistance acting on 
the slave mechanism, Z is an m-dimensional vector of the currents in the armature circuits of the 
d.c. motor, e, is an m-dimensional vector of the controls-the deviations of the controlling voltages 
u, applied to the armature circuits of the d.c. motor, from their programmed values up, .Z, ko, kM, L, 
R, k, are diagonal matrices of the electromechanical parameters of the d.c. motor, which are positive 
real quantities, and ip is a diagonal matrix of the transfer constants of the reduction gears (such that 
cp = ia, where cp is the vector of the angles of rotation of the shafts of the motors). 

For the electromechanical reversible controlled system (1.3)-(1.9), (7.1) the operators of direct 
and inverse transformations in state spaces and Eqs (3.1) and (3.14) have the following respective 
forms 

Here 

(7.2) 
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(7.3) 

1 

L4(ez.t)= P3~‘(Y3,t)L3(eZ,r)D3(e2,t) 

where the matrix functionsPii (i = 1,. . . ,3;j = 1,. . . , i + 1) and the vector functions Yk, ‘@ (k = 1, 
2, 3) are defined in (2.3), (2.5) and (3.10), while the vector functions Mi (i = 2, 3, 4) and the matrix 
functions Ni (i = 2,3,4) are defined by (3.15). 
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